Ansys en una Cáscara de Nuez: Análisis Acoplados Secuencialmente

En esta entrega hablaremos de analisis acoplados. Tendremos un análisis acoplado cuando los datos de entrada de un análisis dependan de los resultados de otro.

Como ejemplo hemos elegido un problema térmico acoplado con un problema estructural. Para resolverlo usaremos los “Physics Enviroments” de Ansys.

Es conveniente echar un vistazo a Ansys en una Cáscara de Nuez: Gradiente Térmico Usando “Body Loads” y a Ansys en una Cáscara de Nuez: Gradiente Térmico usando “Thermal Elements” antes de leer este tutorial.

Planteamiento del análisis acoplado

1) Definimos el problema térmico. Online roulette casinos 21 pro blackjack online dollardepositcasino.com
2) Escribimos el archivo térmico.
3) Reseteamos las CC y las opciones.
4) Definimos el problema estructural.
5) Escribimos el archivo estructural.
6) Leemos el archivo térmico.
7) Resolvemos y posprocesamos el problema térmico.
8 ) Leemos el archivo estructural.
9) Leemos el campo de temperaturas resultado del análisis térmico.
10) Resolvemos y posprocesamos el problema estructural.

Datos del problema

Material: Acero.
Dimensiones: 10×10 m^2.
Empotramiento en uno de sus lados.
Conductividad: 2.2 W/m·K.
Espesor de la placa: 60 cm.
Temperaturas impuestas en las caras: 125ºC y 25ºC.
Modulo de Young: 30 e6 Pa
Módulo de Poison: 0.3

Comandos APDL

/TITLE, Coupled Thermal-Stress and Physics Evironments
/prep7
! --------------------------------------
! Geometría
! --------------------------------------
k,1,0,0,0
k,2,10,0,0
k,3,10,10,0
k,4,0,10,0
l,1,2
l,2,3
l,3,4
l,4,1
al,1,2,3,4
! --------------------------------------
! Material: Propidades térmicas
! --------------------------------------
mp,kxx,1,2.2 !material 1, conductividad del acero
! --------------------------------------
! Elemento placa térmico
! --------------------------------------
ET,1,shell131,0,0,0,1 ! keyop 4-> nº de capas
! --------------------------------------
! Sección
! --------------------------------------
sectype,1,shell
secdata,0.6,1,0 ! espesor, material y ángulo de orientación
! --------------------------------------
! Mallado
! --------------------------------------
type,1
secnum,1
esize,5
amesh,1
! --------------------------------------
! Condiciones de contorno térmicas
! --------------------------------------
da,all,Tbot,25
da,all,ttop,125
! --------------------------------------
! Physics Environment
! --------------------------------------
physics,write,thermal ! Escribe el archivo térmico
physics,clear         ! Elimina CC y opciones
! --------------------------------------
! Elemento placa estructural
! --------------------------------------
et,1,shell181
! --------------------------------------
! Sección
! --------------------------------------
sectype,1,shell
secdata,0.6,1,0 ! espesor, material y ángulo de orientación
! --------------------------------------
! Material
! --------------------------------------
mp,ex,1,30e6
mp,alpx,1,0.65e-5 ! Secant coefficients of thermal expansion
mp,nuxy,1,0.3
! --------------------------------------
! Empotramiento
! --------------------------------------
dl,4,,all,0
! --------------------------------------
! Temperatura de referencia
! --------------------------------------
tref,25
! --------------------------------------
! Physics Environment
! --------------------------------------
physics,write,struct ! Escribe el archivo estructural
! --------------------------------------
finish
/solu
! --------------------------------------
! Physics Environment
! --------------------------------------
physics,read,thermal
! --------------------------------------
solve
finish
/post1
! --------------------------------------
! Visualizamos resultados térmicos
! --------------------------------------
plnsol,ttop ! Graficamos la temperatura de la cara superior
plnsol,tbot ! Graficamos la temperatura de la cara inferior
! Damos volumen y representamos el gradiente
/ESHAPE,1
/GRAPHICS,POWER
PLNSOL,TEMP
! --------------------------------------
finish
/solu
! --------------------------------------
! Physics Environment
! --------------------------------------
physics,read,struct      ! lee el archivo estructural
ldread,temp,,,,,,rth     ! lee las temperaturas del análisis térmico
! --------------------------------------
solve
finish
/post1
! --------------------------------------
! Visualizamos resultados estructurales
! --------------------------------------
! Damos volumen
/ESHAPE,1
plnsol,s,eqv         ! Grafica tensiones
pldisp,2             ! Deformada y posición original

Resultados

Distribución de temperaturas en la placa:

Distribución de tensiones equivalentes de Von Mises:

Deformada de la placa:

Volver al índice…

2 comentarios

  1. Juan Pedro

    HE estado viendo los tutoriales y me ha chocado que la deformación de la placa en el análisis acoplado es diferente que cuando se realiza con cargas, ¿son exactamente los mismos análisis en cuanto a geometría, materiales y condiciones de contorno?

  2. Puedes ver, tanto en el código APDL como en “Datos del problema”, que las dimensiones y los materiales son distintos.
    Un saludo, Juan Pedro

Responder

Planificaciones Estratégicas, Innovaciones, Direcciones y Construcciones Andaluzas S.L.U. CIF B-14860555